ML Engineer MasterClass

Gain hands-on experience from industry experts in developing and productionizing scalable ML systems that solve real-world problems.

Next Kick Off:
June 06
Enroll Now
Limited Capacity

Diploma Program

Gain Mastery in ML Engineering

Get hands-on experience of an ML Engineer in a 8-week Online program led by ML Tech Leads from top companies like Google and Meta.

Online program
8 Weeks
Instructor-led classes
33 Hours
ML Tech Leads
3 Instructors
End-to-End Development
4 ML Projects

Develop and Productionize ML Models

From designing scalable ML systems to productionizing models, solve real-world problems that you can showcase on your career portfolio.

Recommender System

Learn how to build and deploy real-time recommender system on customer ecommerce dataset. You will learn about text, user and image embeddings and learn the state-of-the-art retrieval algorithm like the Two-Tower Architecture.

Large Langugage Model ChatBot

Learn how to build a production-ready LLM search service for a large number of documents, powered by a natural language (chat) interface. Learn the basics of promptimg, indexing, generating and summarizing text via large language models.

Face Detection

Learn the basics of one-shot learning by building a face recognition system, where people must be classified correctly with different facial expressions, lighting conditions, accessories, and hairstyles given one or a few template photos.

Capstone Project

Apply your learnings in the final capstone project. Work with a team of peers to deliver an end-to-end ML application project. Present your project and receive a certification for the completion of the 8-week AI/ML MasterClass.

World-Class Instructors

We are industry experts who led ML projects at top companies like Meta and Google. We will teach you best practices in ML as you get hands-on experience on model development and deployment.

  • Damien Benveniste

    ML Tech Lead

    images

    After a PhD in theoretical physics, I started my Machine Learning career 10 years ago. I have been a Data Scientist, Machine Learning Engineer and Software Engineer. Until recently, I was a Machine Learning Tech Lead at Meta on the automation at scale of model optimization for Ads ranking.

  • Abhishek Kumar

    ML Tech Lead

    imagesimages

    Former Software Engineer at Google, Research Scientist at Facebook and Technical Lead/engineering manager at Meta. I enjoy helping businesses make the best out of their data and have been an ML practitioner for over 10 years. I look forward to helping you all on your ML journey.

  • Dan Lee

    Data Scientist

    images

    For the past 7 years, I have been an ML practitioner with experiences in leading ML projects at a startup and Google. I am now an ML instructor who will teach you the ins-and-outs of model development and deployment scalable ML systems. I look forward to working with you all!

Our 8-Week Curriculum

Our class is 90-minutes on Zoom from 4:30 to 6:00 P.M. PST / 7:30 to 9:00 P.M. EST every Tuesday, Thursday and Friday for the first 7 weeks. On week 8, we have one 90-minute class where you showcase your capstone project.

  • Title
    ML System Design Introduction
    Duration
    1 week
    Classes
    3 classes
    Description
    Learn to think like an ML Engineer. We will start by teaching you how to scope real-world business problems that require ML solutions and teach you how to architect scalable ML solutions
  • Title
    Build a Recommender System
    Duration
    2 weeks
    Classes
    6 classes
    Description
    We will give you a real-world business case that requires a scalable recommender system. We will then teach you the math of the latest models then we will teach you how to code the model using Tensorflow and productionize the model
  • Title
    Build a Large Language Model ChatBot
    Duration
    2 weeks
    Classes
    6 classes
    Description
    We will teach you how to build your own LLM chatbot like ChatGPT from scratch. You will learn the math behind core components (e.g. Transformer) and code the model. We will then show you how to deploy your solution to the cloud in the form of a model API.
  • Title
    Build a Face Recognition System
    Duration
    2 weeks
    Classes
    6 classes
    Description
    We will teach you how to build a scalable face recognition system by covering the math and code of computer vision algorithms and walk through model deployment.
  • Title
    Complete a Capstone Project
    Duration
    1 week
    Classes
    1 class
    Description
    The final week is the capstone project week where you and peer group will choose an end-to-end ML project to build. You will present your solution in the final class and receive the AI Edge Certification upon delivery.

Join Our ML Engineer MasterClass

Become an ML Engineer Expert

Our first class starts at 4:30 P.M. to 6:00 P.M. PST / 7:30 P.M. to 9:00 P.M. EST on June 06, 2023 (Tuesday). We will meet at the same time every Tuesday, Wednesday and Friday for the first 7 weeks. Then, we will end our final week (week 8) with one class of capstone presentations on Thursday, July 27.

What's included

  • 33 hours of live classes
  • 4 end-to-end ML projects
  • 3 MLE instructors
  • Certification
  • Best practices in ML engineering
  • Cohort-based learning
  • Slack community access
  • Alumni community

Upskill in ML Engineering

$1597USD

Enroll Now

Invoices and receipts available for easy company reimbursement

Frequently asked questions

Have a different question and can't find the answer you're looking for? Reach out to our support team by sending us an email at contact@theaiedge.io and we'll get back to you as soon as we can.

Am I ready for the masterclass?
This course is an advanced course in ML. We expect that you have had 1-year of professional experience in ML or completed a university degree in machine learning and/or data science.
What is the pre-requisite knowledge for the masterclass?
We expect that you already grasp ML fundamentals (e.g. the variance and bias trade-off), Python coding and neural network basics (e.g. back propagation).
How advanced in this course?
We will teach best practices in ML engineering in three major problem areas - recommender system, large language model, computer vision - and teach you ML system design and productionization.
How much math do I need to know?
The portion of the course will be dedicated on deconstructing the mathemtics of SOTAs like Two-Tower Model, Transformer, and Reinforcement Learning. We expect that you have a base knowledge on how a neural network model works.
How much coding do I need to know?
We expect that you have at least 1-year experience in Python programming. Having a basic knowledge in Tensorflow is a plus as we will use this to develop and productionize models.
What is the tech stack covered in the course?
We will use Python, Tensorflow, Colab, Docker, Cloud (e.g. AWS), FastAPI.
I won't be able to attend some of the class, will the class be recorded? And, how long is the access?
Yes, the class will be recorded, and you will have access to it for a year.
What goes on in the Slack group?
You will gain access to community of instructors, your peers in current masterclass and alumni to exchange ideas and upskill in ML engineering together.
What happens after I purchase?
You will receive an onboarding content, including Slack group access and Zoom invites to your classes.
Can I get a company reimbursement?
Yes, we will send you an invoice that enables you to reimburse the purchase.
Is it possible to pay in installments?
Absolutely, we provide a payment plan that allows you to pay in 3 monthly installments.
How do I get the AI Edge certification?
After completion of the Capstone project on week 8, you will receive the AI Edge Certification which you can display on your professional portfolio (e.g. resume, LinkedIn).